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Abstract

The paper shows that the aspiration core of any TU-game coincides
with the set of competitive wages of two different types of production
economy. If agents can divide their time among various coalitions, the
set of firms that are active in the market is endogenously determined
in equilibrium and it coincides with the generating collection of the
corresponding aspiration core allocation. Assuming indivisible time
we also achieve similar results by introducing a market for contingent
labor/employment lotteries.

Keywords: Endogenous firm formation, Aspiration core, Employment lot-
teries

1 Introduction

This paper belongs to the branch of literature initiated by Shapley and Shu-
bik’s seminal work relating economies and coalitional transferable utility
(TU) games. Shapley and Shubik (1975) identify the core of any totally
balanced (market) game with the set of Walrasian allocations of a corre-
sponding pure-exchange “direct” economy. We generalize the previous re-
sult to games that are not necessarily balanced by identifying the aspiration
core (Cross 1967, Bennett 1983) allocations of any TU-game with competi-
tive equilibria of “direct” production economies. Furthermore, we adapt the
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coalition formation approach described in the aspiration literature to relate
it with endogenous firm creation in the corresponding economy.

For games that are not balanced, the worth of the grand coalition can-
not be divided among the individual players in such a way that no smaller
coalition would have an incentive to form. For such games coalition forma-
tion becomes an issue as it is not clear that the grand coalition will emerge.
To make the coalition formation process explicit, we define two types of
direct production economies in which agents can create coalitional firms.
Given a TU-game v, the members of coalition S may join efforts working
in a firm whose productivity depends on v(S). We label these economies
as “direct” because agents are endowed with one unit of productive time
which they sell to the firms in exchange for consumption. In the first type
of production economy (Section 3) time is divisible and agents can spend
it working simultaneously for various firms. We show that aspiration core
vectors coincide with Walrasian prices of the corresponding direct produc-
tion economy. Additionally, we also show that active firms in equilibrium
correspond to coalitions that make such aspiration core vectors feasible (i.e.,
coalitions that lie in their generating collection).

However, many economic examples do not allow an agent to simultane-
ously be part of two different coalitions. This is why the second model (Sec-
tion 4) assumes that time is indivisible. Due to the inherent non-convexity
introduced, such economies do not always have a Walrasian equilibrium. We
show that if agents and firms are allowed to trade lottery contracts spec-
ifying a positive probability of unemployment (as in (Rogerson 1988)), an
equilibrium always exists. Equilibrium prices of these lottery production
economies are in a one-to-one and onto relation with the aspiration core
vectors, and firms that form with positive probability in equilibrium belong
to the corresponding generating collection. Our results posit the aspiration
core allocations as being the competitive market values of the individual
players’ participation into various coalitions.

Following Shapley and Shubik (1969) and Shapley and Shubik (1975),
different types of direct economies have been associated with TU-games in
the literature. Assuming perfect divisibility of labor, Inoue (2010) associates
to an arbitrary TU-game v a coalition production economy and proves that
its competitive equilibria coincide with the core of the totally balanced cover
of v. Our results in Section 3 complement his findings by adding a coali-
tion formation process based on the aspiration literature. Garratt and Qin
(1997) modify Shapley and Shubik’s (1975) pure-exchange economy to ac-
count for indivisibilities in agents’ time and introduce trading in lotteries.
They show that only super-additive games can be derived from such direct
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lottery economies and establish an equivalence between the core vectors of
a game v and the equilibrium prices of the associated lottery economy. Sun,
Trockel, and Yang (2008) analyze the role of labor indivisibilities in the
context of a coalition production economy with no trade in lotteries. They
show that competitive equilibria of such economy are in one-to-one and onto
correspondence with the core vectors of the super-additive completion of the
game (whenever the latter exist). The aspiration core of a game v coincides
with the cores of v and the super-additive completion of v whenever either of
the last two is not empty. Thus, our results in Section 4 generalize Garratt
and Qin’s (1997) and Sun, Trockel, and Yang’s (2008) to arbitrary TU-games
by interpreting the aspiration core vectors as the competitive market values
of agents’ individual skills.

The paper is organized as follows. Notation and definitions are intro-
duced in Section 2. Section 3 assumes that agents’ coalitional participations
are perfectly divisible and constructs a direct production economy whose
competitive equilibrium prices coincide with the aspiration core of the game.
In Section 4 it is assumed that time is indivisible and agents can trade lot-
tery contracts. We introduce the concept of a lottery equilibrium and prove
the equivalence between these equilibria and the aspiration core of the game.
Section 5 concludes.

2 Definitions and Notation

Let N be a finite set of n players, N the collection of all non-empty subsets
of N , and for any i ∈ N define Ni = {S ∈ N | S 3 i}. Let ∆N (respectively
∆N ) be the unit simplex in RN (respectively RN ), and ei ∈ ∆N (respectively
eS ∈ ∆N ) the vertex corresponding to i ∈ N (respectively S ∈ N ). For every
S ∈ N , let 1S ∈ {0, 1}N denote the indicator function of S.

A TU-game (or simply a game) on N is a mapping v : 2N → R+ such
that v(∅) = 0. For any S ⊆ N , v(S) is called the worth of coalition S.
The restriction of a game v to S ⊆ N , is the game v|S on S such that
v|S(T ) := v(T ) for all T ⊆ S. Given a game v on N , a possible outcome is
represented by a payoff vector x ∈ RN that assigns to every i ∈ N a payoff
xi. Given x ∈ RN and S ⊆ N , let x(S) :=

∑
i∈S xi, with the agreement that

x(∅) = 0. A payoff vector x ∈ RN is feasible for coalition S if x(S) ≤ v(S).
It is individually feasible if for every i ∈ N , there exists S ∈ Ni such that
x is feasible for S. We say that coalition S is able to improve upon the
outcome x ∈ RN if x(S) < v(S). A vector x ∈ RN is stable if it cannot be
improved upon by any coalition. The core of v, denoted C(v), is the set of
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stable outcomes that are feasible for N , that is,

C(v) := {x ∈ RN | x(S) ≥ v(S) ∀S ⊆ N, x(N) = v(N)}.

A stable payoff vector x ∈ RN that is individually feasible is called an
aspiration. We denote by Asp(v) the set of aspirations of game v. It is
known that for any game v, Asp(v) is a non-empty, compact and connected
set (Bennett and Zame 1988). The generating collection of an aspiration x
is the family of coalitions S that can attain x, that is,

GC(x) := {S ∈ N | x(S) = v(S)}.

A collection of coalitions B ⊆ N is called balanced (respectively weakly
balanced) if there exist positive (respectively non-negative) numbers (λS)S∈B
such that for every i ∈ N ,

∑
S∈Ni∩B λS = 1. The numbers λS are called

balancing weights. A game v on N is called balanced if
∑

S∈B λSv(S) ≤ v(N)
for every balanced family B with balancing weights (λS)S∈B. Bondareva
(1963) and Shapley (1967) showed that v is balanced if and only if C(v) 6= ∅.
A game v is called totally balanced if v|S is balanced for every S ⊆ N . For
every game v, let v̄ denote the least totally balanced set function that is
greater or equal to v. The game v̄ is called the totally balanced cover of v.

The aspiration core (Cross 1967, Bennett 1983) of a game v, denoted
AC(v), is the set of those aspirations x ∈ Asp(v) for which GC(x) is weakly
balanced. It is known that AC(v) = C(v) if and only if v is balanced and
AC(v) = C(v̄) 6= ∅ for every game v.

3 Games as Production Economies with Divisible
Labor

In the spirit of Shapley and Shubik (1969), we are going to associate a TU-
game with every private-ownership production economy and, reciprocally,
construct a private-ownership production economy (called a direct produc-
tion economy) starting from any TU-game.

Let L be a finite set of goods, I a finite set of consumers and J a finite
set of firms. A private-ownership production economy or simply an economy
is

E := (L, I, J ; (Xi, ui, ωi)i∈I , (Y j)j∈J , (θ
j
i )i∈I,j∈J),

where for every i ∈ I, Xi ⊆ RL
+, ui : Xi → R and ωi ∈ Xi respectively

denote agent i’s consumption set, utility function and initial endowment of
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goods. For every j ∈ J , Y j ⊆ RL is firm j’s production set and θj ∈ RI
+ its

distribution of shares across consumers, so that
∑

i∈I θ
j
i = 1.1 We restrict

attention to production economies in which consumers’ utility functions are
quasi-linear in the same good and firms’ production sets exhibit constant
returns to scale.

For every non-empty subset of consumers S, let JS := {j ∈ J |
∑

i∈S θ
j
i =

1} be the set of firms that are fully owned by consumers in S. A consump-
tion allocation for E is any x ∈

∏
i∈I Xi. It is called feasible for coalition S

if there is a vector of production plans y ∈
∏
j∈JS

Y j such that∑
i∈S

xi =
∑
i∈S

ωi +
∑
j∈JS

yj . (1)

We denote by F(S) the set of feasible consumption allocations for coali-
tion S.

Given an economy E, define the TU-game V(E) on I by

V(E)(S) := max

{∑
i∈S

ui(xi) | x ∈ F(S)

}
, (2)

for every S ⊆ I. A TU-game v is called a production market game if there
exists a private-ownership production economy E such that v = V(E). Note
that, as in Shapley and Shubik (1969), there are many production economies
that generate the same production market game v.

Conversely, given a game v on N , we define its direct production economy
as the private-ownership production economy

E(v) =
(
{Li | i ∈ N} ∪ {C}, N,N ; (Xi, ui, ωi)i∈N , (Y S)S∈N , (θSi )(i,S)

)
, (3)

where each consumer i ∈ N has a consumption set Xi = Rn+1
+ , a utility

function such that ui(l1, . . . , ln, c) = c, and an endowment ωi = (ei, 0) ∈
Rn+1

+ . Each firm S ∈ N has a production set

Y S :=
{

(l1, ..., ln, c) ∈ −RN
+ × R+ | li = 0 if i /∈ S, c ≤ min

i∈S
|li| · v(S)

}
and distribution of shares θSi = 1

|S| · 1S(i).2

1This construction follows the description of Shapley and Shubik (1969, Section 6.1).
2Since firms’ technologies have constant returns to scale, the distribution of shares is

irrelevant for the competitive equilibrium. Our results remain true for other distributions
of shares as long as for every S ⊆ N , consumers in S fully own firm S.
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Thus, the economy E(v) has n consumers, 2n − 1 firms and n + 1 com-
modities. The last commodity, denoted C, is a consumption good; the other
n commodities, denoted L1, ..., Ln, represent agent-specific human capital
(or skilled labor). Each consumer i cares only about the amount of good
C he consumes and is endowed with one unit of human capital Li. Firms
are indexed by S ⊆ N and each firm S uses human capital (skilled labor)
(Li)i∈S to produce the consumption good.3

The following proposition is an analogue of Shapley and Shubik’s (1969)
results within our production economy framework. It shows that the only
games that can be derived from a private-ownership production economy
with labor divisibilities are those that are totally balanced.

Proposition 3.1 For every game v, V(E(v)) = v̄. Moreover, a game is
totally balanced if and only if it is a production market game.

Proof. Fix a game v on N . By definition, for any S ⊆ N , V(E(v))(S) =
max

∑
i∈S ci subject to the existence of production plans (lT , cT ) ∈ Y T , one

for each T ⊆ S, satisfying∑
i∈S

(0, ci) =
∑
i∈S

(ei, 0) +
∑
T⊆S

(
lT1 , . . . , l

T
n , (min

i∈T
|lTi |) · v(T )

)
.

Thus, the feasibility condition for the consumption commodity is reduced
to
∑

i∈S ci =
∑

T⊆S l̄
T · v(T ), which implies that

V(E(v))(S) = max

∑
T⊆S

l̄T · v(T ) |
∑
T∈Ni

l̄T = 1, ∀i ∈ S

 = v̄(S),

as desired.
If v is a totally balanced game, then v = v̄ and thus V(E(v)) = v, which

proves that v is a production market game. Reciprocally, if v = V(E) for
some convex economy E then its core is non-empty and thus v is balanced.
For any S ⊆ N , the subgame v|S is also a production market game, as it can
be generated by the restriction of E to S. As any subgame of v is balanced,
we conclude that v is totally balanced.

We show next that competitive equilibria of a production economy are
in a one-to-one and onto mapping with the aspiration core allocations of the
associated TU-game.

3Similar constructions are used by Sun, Trockel, and Yang (2008) and Inoue (2010) to
associate to every TU-game a coalition production economy.
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Let v be a game and E(v) its direct production economy. A competitive
(or Walrasian) equilibrium for E(v) is a vector[

(w̄, 1) ∈ R|N |+1
+ , c̄ ∈ R|N |+ , (−l̄S · 1S , l̄Sv(S))S∈N

]
of (relative) wages, allocations, and production plans such that:

1. πS = l̄S(v(S)− w̄(S)) = maxlS lS(v(S)− w̄(S)), for every S ∈ N

2. c̄i = w̄i +
∑

S∈Ni

1
|S|π

S for every i ∈ N

3.
∑

S∈Ni
l̄S = 1 for all i ∈ N

4.
∑

i∈N c̄i =
∑

S∈N l̄
Sv(S)

Given a vector of relative wages (w̄i)i∈N , each consumer i chooses an
affordable consumption plan that maximizes her utility and each firm S
selects an optimal production plan to maximize its profit. Given the pro-
duction sets, each firm S’s demand for labor must be of the form lS · 1S ,
with lS ∈ R+. Next proposition identifies the aspiration core vectors with
the wages agents would receive by selling their time/skills in a competitive
market and the corresponding generating collection with the set of firms
that are active in equilibrium.

Proposition 3.2 Let x̄ ∈ AC(v) and (λ̄S)S be a system of balancing weights
associated with GC(x̄). Then, [(x̄, 1), x̄, (−λ̄S ·1S , λ̄Sv(S))S ] is a competitive
equilibrium for E(v).

Reciprocally, if [(w̄, 1), c̄, (−l̄S · 1S , l̄Sv(S))S∈N ] is a competitive equilib-
rium in E(v), then c̄ ∈ AC(v) and S ∈ GC(c̄) whenever l̄S > 0.

Proof. Let x̄ ∈ AC(v) and (λ̄S)S as above. For every firm S /∈ GC(x̄)
it is optimal to choose l̄S = 0 at prices (x̄, 1) and thus remain inactive.
Every firm S ∈ GC(x̄) is indifferent over the choice of lS ∈ R+ at prices
(x̄, 1) and, in particular, it can choose l̄S = λ̄S . Since GC(x̄) is balanced, all
labor markets clear. Finally, feasibility in the consumption good holds as
x̄(N) =

∑
S∈GC(x̄) λ̄S x̄(S) =

∑
S∈GC(x̄) λ̄Sv(S) =

∑
S∈N λ̄Sv(S). Thus, the

vector
[
(x̄, 1), x̄, (−λ̄S · 1S , λ̄Sv(S))S

]
is a competitive equilibrium for E(v).

Let now
[
(w̄, 1), c̄, (−l̄S · 1S , l̄Sv(S))S∈N

]
be a competitive equilibrium in

E(v). Since production sets exhibit constant returns to scale, profits equal
zero for all S ∈ N . Then c̄i = w̄i for every i ∈ N and v(S) ≤ w̄(S) = c̄(S)
for every S ∈ N . Therefore c̄ is stable. Moreover, l̄S = 0 for every S for
which v(S) < w̄(S). The market clearing condition implies then that GC(c̄)
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is balanced, with balancing weights (l̄S)S , and thus c̄ ∈ AC(v).

Our treatment extends the analogies between games and direct economies
presented in Shapley and Shubik (1975) and Inoue (2010). In particular, we
show that not only payoffs, but formed coalitions (in game v) and productive
firms (in economy E(v)), coincide. For any coalition S ∈ N , the balancing
weight λS is equal to the amount of time lS firm S is active in the Walrasian
equilibrium of the corresponding direct production economy.

3.1 An Example

Consider the following game: v(∅) = v(1) = v(2) = v(3) = 0, v(1, 2) =
v(1, 3) = v(2, 3) = v(1, 2, 3) = 1. This game has an empty core, but its as-
piration core is AC(v) = {(1

2 ,
1
2 ,

1
2)}. The generating collection of its unique

element is GC(1
2 ,

1
2 ,

1
2) = {{1, 2}, {2, 3}, {1, 3}}. We are going to illustrate

next how the aspiration core allocation can be obtained via a decentralized
market mechanism.

Consider an economy with three agents (call them truck drivers) and
three firms.4 Agents have identical skills and each is endowed with one
unit of time which can be supplied as labor. Firms have identical tech-
nologies (each owns a truck) and hire labor to produce the same output
good (deliveries). The production set of a multi-agent firm S is Y S ={

(l1, l2, l3, c) ∈ −R3
+ × R+ | li = 0 if i /∈ S, c ≤ mini∈S |li|

}
. Thus every de-

livery needs the labor input of two truck agents. Truck drivers only care
about the number of deliveries they make and have no disutility of labor.

Assume first that both labor and the output good are divisible and thus
agents can choose to work part-time for various firms. This case serves
as an illustration of Proposition 3.2. It is easy to check that w = 1

2 is an
equilibrium wage at which each agent works half-time for two firms and each
firm employs exactly 2 workers.

If labor is indivisible (agents cannot receive part-time contracts) then an
equilibrium does not exist. At a wage w = 1

2 , each agent chooses to work
for exactly one firm. On the other hand, no firm wants to hire only one or
all three workers, because its profits would be negative. Consequently there
is no allocation of workers to firms and no equilibrium. Non-existence of a
competitive equilibrium in this case is directly related to the emptiness of
the core of the game v.

4Three firms are enough to illustrate the equivalence between competitive wages and
aspiration core allocations in this example because the generating collection of the aspi-
ration core allocation has three elements.
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Assume next that labor is still indivisible, but agents can trade employ-
ment lotteries. For example, workers can submit job applications to more
than one firm and randomize over which offer to accept. Firms can also
offer employment contracts that stipulate a probability of being laid off (or
a probability of delivery cancellation). In this case w = 1

2 is again an equi-
librium wage. At this wage, each driver chooses to submit exactly two job
applications and accept each firm’s offer with equal probability. Each firm
chooses to hire exactly two drivers, offering them employment contracts that
carry a 50% chance of delivery cancellation. There are three essentially dif-
ferent outcomes arising from these equilibrium wages. Each of them occurs
with a probablity of 1

3 :

1. Agents 1 and 2 work for one firm and the other two firms are inactive,

2. Agents 2 and 3 work for one firm and the other two firms are inactive,

3. Agents 1 and 3 work for one firm and the other two firms are inactive.

The following section formalizes these results, making them applicable
to arbitrary TU-games.

4 Indivisibilities, lotteries and the aspiration core

We modify the analysis of the previous section by assuming that goods
L1, ...Ln are indivisible, while the consumption good C remains perfectly
divisible. Given a game v on N , we define its indivisible direct production
market as

E indiv(v) =
[
{Li | i ∈ N} ∪ {C}, N,N , (Xi, ui, ωi)i∈N , (Y S)S∈N , (θSi )(i,S)

]
,

where Xi = {0, 1}n × R+, ui(l1, . . . , ln, c) = c, and ωi = (ei, 0) for each con-
sumer i ∈ N . Each firm S has a production set Y S := {k · (−1S , v(S)) | k ∈
N} and shares θSi = 1

|S| · 1S(i).
Note that if agents only work for the grand coalition time divisibility

becomes irrelevant. Thus, Proposition 3.2 implies x ∈ C(v) if and only if x is
a competitive allocation for E indiv(v). Moreover, as proved by Sun, Trockel,
and Yang (2008), the indivisible direct production market does not have an
equilibrium unless the super-additive completion of v, is balanced.5 We show
next that, if firms and consumers are allowed to sign employment contracts

5The super-additive completion of v is defined as a game ṽ such that ṽ(S) = v(S) if
S 6= N and ṽ(N) = maxB∈P

∑
S∈B v(S), where P denotes the set of all partitions of N .
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contingent on the outcome of a lottery (see Rogerson (1988) for a related
model), equilibrium wages always exist and coincide with the aspiration core
vectors of the corresponding game v.

Assume that (skilled) labor is indivisible, but consumers and firms may
choose to default on their labor contracts. Consumers may contemplate
switching between equally-paying jobs, while firms can layoff workers and
get out of business. However, rather than modeling strictly enforceable
contracts and punishments for default, we design our model such that the
probabilities of default will be embedded in the equilibrium market prices.
We assume therefore that consumers and firms trade in labor or employment
lotteries specifying, for each party, a probability of employment termination
as described below.

A labor lottery for agent i is a vector pi ∈ ∆Ni such that
∑

S∈Ni
pSi = 1.

Thus, pSi specifies the probability with which agent i chooses to work for firm
S (or, alternatively, 1− pSi can be interpreted as the probability that i will
terminate his/her contract with firms S, if hired). Given a wage level wi,
agent i chooses a probability distribution over the firms S ∈ Ni. We assume
that consumers are risk-neutral and thus the utility consumer i derives from
choosing the labor lottery pi and consumption c is:

Ui(pi, c) :=
∑
S∈Ni

pSi ui(e
S , c) = c

for all (pi, c) ∈ ∆Ni × R+.
An employment lottery for firm S specifies a probability, φS ∈ [0, 1] of

maintaining employment from that firm or, equivalently, a probability 1−φS
of being laid off. Alternatively, one can interpret φS as the probability that
S remains in business. Each firm S chooses an employment lottery and,
contingent on being active, an operating level (labor force size) kS ∈ N.
Each firm S is assumed to maximize its expected profits and thus it solves

max {φS · kS (v(S)− w(S)) | φS ∈ [0, 1], kS ∈ N} . (4)

As opposed to the standard employment lottery models which assume a
continuum of agents (e.g. Rogerson (1988)), our economy is finite and thus
we cannot rely on the law of large numbers to ensure labor market clearing.
Along the lines of Garratt (1995) we say that a set of labor/employment
lotteries is feasible if its elements are the marginals of some (auctioneer-run)
joint lottery on the set of feasible labor contracts. More precisely, we define
a labor contract as a vector x ∈ {0, 1}N , in which the component xS is equal
to 1 if and only if firm S is active (and thus every consumer i ∈ S is employed
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full-time). A labor contract is feasible if [xS = xS′ = 1] ⇒ [S ∩ S′ = ∅] for
all S 6= S′.

Note that feasibility of labor contracts only requires that there is no ex-
cess demand for labor/human capital. It does not require that the labor mar-
ket clears. For every feasible labor contract x, define T (x) :=

⋃
{S | xS = 1}

as the set of employed agents. At a feasible labor contract, T (x) may be a
strict subset of N . Denote the set of all feasible labor contracts by X , and
consider an arbitrary probability distribution γ on X . Then the probability
that firm S is active is

∑
{x|xS=1} γ(x), while the probability that consumer

i is employed is γi :=
∑
{x|T (x)∈Ni} γ(x).

Definition 4.1 A set of labor and employment lotteries ((pi)i∈N , (φS)S∈N )
is feasible if

1. There exists γ ∈ ∆X such that φS =
∑
{x|xS=1} γ(x), for all S ∈ N ,

2. pSi = φS∑
T∈Ni

φT
, for every S ⊆ N and every i ∈ S, and pSi = pSj if

i, j ∈ S.

The first condition is a compatibility condition for labor demand. It re-
quires that the probability of firm S operating coincides with the marginal of
a joint probability distribution over the set of feasible labor contracts. The
second condition requires that the probability that agent i assigns to work-
ing for firm S is exactly the probability of firm S operating, conditional on i
being employed. The second part of condition 2 captures the labor comple-
mentarities embedded in firms’ technologies. Note that the two conditions
imply that

∑
S∈Ni

φS = γi > 0 and γi = γj for all i, j ∈ N .

Definition 4.2 An equilibrium for the direct lottery market is a list of vec-
tors [

(w̄i)i, (p̄i)i, (φ̄S)S , (k̄S)S
]

such that

1. p̄i ∈ ∆Ni for every i ∈ N

2. (φ̄S , k̄S) solves (4) for every S ⊆ N

3. kS = 1, for all S ⊆ N

4. ((p̄i)i, (φ̄S)S) is feasible according to Definition 4.1.

We can now relate aspiration core allocations with equilibrium wages.
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Theorem 4.3 If w̄ ∈ AC(v) and (λS)S is a system of balancing weights
associated with GC(w̄), then[

(w̄i)i∈N , ((λS)S∈Ni)i∈N ,
(
λS
Λ

)
S∈N

, (kS = 1)S∈N

]
is a competitive equilibrium for the direct lottery market, where Λ :=

∑
S∈N λS.

Reciprocally, if [(w̄i)i∈N , (p̄i)i∈N , (φ̄S)S⊆N , (k̄S)S⊆N ] is a competitive equi-
librium for the direct lottery market, then w̄ ∈ AC(v) and S ∈ GC(w̄) when-
ever φ̄S > 0.

Proof. Let w̄ ∈ AC(v) and (λS)S a system of balancing weights as-
sociated with GC(w̄). Define p̄Si := λS , φ̄S := λS

Λ and γ ∈ ∆X such that
γ(x) = φ̄S if x = eS for some S ∈ N and γ(x) = 0 otherwise. Then
((p̄i)i∈N , (φ̄S)S∈N ) is feasible, being supported by the joint lottery γ ∈ ∆X .
Moreover, since w̄ ∈ AC(v), w̄(S) ≥ v(S) and thus (φ̄S , 1) is an optimal
choice for firm S, which generates an expected profit of 0.

Reciprocally, if [(w̄i)i∈N , (p̄i)i∈N , (φ̄S)S⊆N , (k̄S)S⊆N ] is an equilibrium for
the direct lottery market, then w̄(S) ≥ v(S), otherwise firm S would make
infinite profits. Profit maximization also dictates that φ̄S > 0 only if w̄(S) =
v(S). On the other hand, feasibility implies that

∑
S∈Ni

φ̄S > 0 and thus,
for every i ∈ N there exists S ∈ Ni such that φ̄S > 0 and w̄(S) = v(S),
which implies that w̄ is an aspiration. In addition, λS := φS∑

T∈Ni
lT

does not

depend on i and
∑

S∈Ni
λS = 1 for every i ∈ N . This proves that GC(w̄) is

balanced and thus w̄ ∈ AC(v).
An immediate consequence of Theorem 4.3 is that the core of a game

v is non-empty if and only if the direct lottery market has a degenerate
equilibrium in which pNi = 1 for every i ∈ N , lN = 1 and φS = 0 for every
S ( N . Thus, all consumers are employed by one firm and there is no
default in the labor-employment contracts. Each agent receives a wage (and
utility) equal to his/her payoff at a core allocation. This is equivalent to
saying that the grand coalition forms and its worth is split among agents
according to some core vector.

On the other hand, the game v has a non-empty c-core if and only if the
direct lottery market has an equilibrium for which γi = 1 for all i ∈ N . In
this case it is still true that each agent is employed but, unless the game is
balanced, several firms may be active. Wages received are elements in the
c-core of the game. Thus, our results generalize those of Sun, Trockel, and
Yang (2008).

If the c-core of the TU-game is empty, then each player faces a positive
probability of being unemployed and thus, in every realization of the joint
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lottery, the labor market is in excess supply. Firms that are active at a
particular realization of the equilibrium lottery correspond to elements of
the generating collection and wages paid are elements of the aspiration core
of the game.

5 Final Remarks

Most cooperative solution concepts do not simultaneously address the al-
location and coalition formation problems. For example the core, if non-
empty, exogenously dictates the formation of the grand coalition. Zhou
(1994) moves a step forward by defining a new type of bargaining set which
addresses both questions. On the down side, Zhou’s (1994) bargaining set
cannot be decentralized using a market economy (Anderson, Trockel, and
Zhou 1997). The aspiration core endogenously proposes both payoffs and
coalitions and this paper endows it with the link to competitive equilibrium
that Zhou’s (1994) bargaining set is lacking. Additionally, the aspiration
core not only includes, but it coincides with the core when the latter is
non-empty.
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